MBR0540T1G, NRVB0540T1G, MBR0540T3G, NRVB0540T3G

Schottky Power Rectifier, Surface Mount,

0.5 A, 40 V, SOD-123 Package

The Schottky Power Rectifier employs the Schottky Barrier principle with a barrier metal that produces optimal forward voltage drop-reverse current tradeoff. Ideally suited for low voltage, high frequency rectification, or as a free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. This package provides an alternative to the leadless 34 MELF style package.

Features

- Guardring for Stress Protection
- Very Low Forward Voltage
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Package Designed for Optimal Automated Board Assembly
- AEC-Q101 Qualified and PPAP Capable
- NRVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- All Packages are $\mathrm{Pb}-$ Free*

Mechanical Characteristics

- Device Marking: B4
- Polarity Designator: Cathode Band
- Weight: 11.7 mg (approximately)
- Case: Epoxy Molded
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: $260^{\circ} \mathrm{C}$ max. for 10 Seconds
- ESD Rating:
- Human Body Model = 3B
- Machine Model = C

[^0](Note: Microdot may be in either location)

ORDERING INFORMATION

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MBR0540T1G	SOD-123 (Pb-Free)	$3,000 /$ Tape \& Reel $(8 \mathrm{~mm}$ Tape, 7" Real)
NRVB0540T1G	SOD-123 (Pb-Free)	$3,000 /$ Tape \& Reel $(8 \mathrm{~mm}$ Tape, 7" Real)
MBR0540T3G	SOD-123 (Pb-Free)	$10,000 / T a p e ~ \& ~ R e e l ~$ $(8 \mathrm{~mm}$ Tape, 13" Real)
NRVB0540T3G	SOD-123 (Pb-Free)	$10,000 / T a p e ~ \& ~ R e e l ~$ $(8$ mm Tape, 13" Real)
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.		

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

-

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	$\mathrm{V}_{\mathrm{RRM}}$ $\mathrm{V}_{\mathrm{RWM}}$ V_{R}	40	V
Average Rectified Forward Current (At Rated $\mathrm{V}_{\mathrm{R}}, \mathrm{T}_{\mathrm{C}}=115^{\circ} \mathrm{C}$)	I		
Peak Repetitive Forward Current (At Rated V_{R}, Square Wave, $20 \mathrm{kHz}, \mathrm{T}_{\mathrm{C}}=115^{\circ} \mathrm{C}$)	0.5	A	
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	$\mathrm{I}_{\mathrm{FRM}}$	1.0	A
Storage/Operating Case Temperature Range	5.5	A	
Operating Junction Temperature	$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{C}}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Voltage Rate of Change (Rated $\mathrm{V}_{\mathrm{R}}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}$)	T_{J}	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance - Junction-to-Lead (Note 1)	$\mathrm{R}_{\mathrm{tjl}}$	118	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance - Junction-to-Ambient (Note 2)	$\mathrm{R}_{\mathrm{tj} \mathrm{a}}$	206	

1. Mounted with minimum recommended pad size, PC Board FR4.
2. 1 inch square pad size (1×0.5 inch for each lead) on FR4 board.

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Value		Unit
Maximum Instantaneous Forward Voltage (Note 3)	v_{F}	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$	V
$\begin{aligned} & \left(\mathrm{i}_{\mathrm{F}}=0.5 \mathrm{~A}\right) \\ & \left(\mathrm{i}_{\mathrm{F}}=1 \mathrm{~A}\right) \end{aligned}$		$\begin{aligned} & \hline 0.51 \\ & 0.62 \end{aligned}$	$\begin{aligned} & \hline 0.46 \\ & 0.61 \end{aligned}$	
Maximum Instantaneous Reverse Current (Note 3)$\begin{aligned} & \left(V_{R}=40 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}\right) \end{aligned}$	I_{R}	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$	$\mu \mathrm{A}$
		$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{gathered} 13,000 \\ 5,000 \end{gathered}$	

3. Pulse Test: Pulse Width $\leq 250 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

Figure 1. Typical Forward Voltage

Figure 2. Maximum Forward Voltage

MBR0540T1G, NRVB0540T1G, MBR0540T3G, NRVB0540T3G

Figure 3. Typical Reverse Current

Figure 5. Current Derating

Figure 7. Capacitance

Figure 4. Maximum Reverse Current

Figure 6. Forward Power Dissipation

Figure 8. Typical Operating Temperature Derating*

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_{j} therefore must include forward and reverse power effects. The allowable operating T_{J} may be calculated from the equation: $\quad T_{J}=T_{J \max }-r(t)(P f+P r)$ where
$r(t)=$ thermal impedance under given conditions,
$\mathrm{Pf}=$ forward power dissipation, and
$\mathrm{Pr}=$ reverse power dissipation
This graph displays the derated allowable T_{J} due to reverse bias under DC conditions only and is calculated as $T_{J}=T_{J \max }-r(t) P r$, where $r(t)=$ Rthja. For other power applications further calculations must be performed.

MBR0540T1G, NRVB0540T1G, MBR0540T3G, NRVB0540T3G

Figure 9. Thermal Response Junction to Lead

Figure 10. Thermal Response Junction to Ambient

SCALE 5:1

SOLDERING FOOTPRINT*

$$
\text { SCALE 10:1 } \quad\left(\frac{\mathrm{mm}}{\text { inches }}\right)
$$

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SOD-123
CASE 425-04
ISSUE G
DATE 07 OCT 2009

NOTES:

1. Dimensioning and tolerancing per ansi Y14.5M, 1982
2. CONTROLING DIMENSION: INCH.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
	0.94	1.17	1.35	0.037	0.046	0.053
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.51	0.61	0.71	0.020	0.024	0.028
C	---	---	0.15	---	---	0.006
D	1.40	1.60	1.80	0.055	0.063	0.071
E	2.54	2.69	2.84	0.100	0.106	0.112
H $_{\text {E }}$	3.56	3.68	3.86	0.140	0.145	0.152
L	0.25	---	---	0.010	---	---
$\boldsymbol{\theta}$	0°	---	10°	0°	---	10°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " $\stackrel{\text { " }}{ }$, may or may not be present.

STYLE 1 :
PIN 1. CATHODE 2. ANODE

| DOCUMENT NUMBER: | 98ASB42927B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOD-123 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:
onsemi:
NRVB0540T1G MBR0540T1 MBR0540T1G MBR0540T3 MBR0540T3G NRVB0540T3G

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

